Phosphorylation at Ser65 modulates ubiquitin conformational dynamics

Abstract

Ubiquitin phosphorylation at Ser65 increases the population of a rare C-terminally retracted (CR) conformation. Transition between the Major and CR ubiquitin conformations is critical for promoting mitochondrial degradation. The mechanisms by which the Major and CR conformations of Ser65-phosphorylated (pSer65) ubiquitin interconvert, however, remain unresolved. Here, we perform all-atom molecular dynamics simulations using the string method with swarms of trajectories to calculate the lowest free-energy path between these two conformers. Our analysis reveals the existence of a Bent intermediate in which the C-terminal residues of the β5 strand shift to resemble the CR conformation, while pSer65 retains contacts resembling the Major conformation. This stable intermediate was reproduced in well-tempered metadynamics calculations but was less stable for a Gln2Ala mutant that disrupts contacts with pSer65. Lastly, dynamical network modeling reveals that the transition from the Major to CR conformations involves a decoupling of residues near pSer65 from the adjacent β1 strand.

Alvin Yu
Alvin Yu
Assistant Professor of Physiology and Biophysics

My research interests include molecular biophysics, modeling and simulation, and statistical mechanics.